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Abstract 20 
 21 
Coral reef managers require various forms of data. While monitoring is typically the 22 
preserve of scientists, larger scale reconnaissance data that can be used to inform 23 
spatial decisions does not usually require such precise measurement. There is an 24 
increasing need to collect such broadscale, up-to-date environmental data at 25 
massive scale to prioritise limited conservation resources in the face of global 26 
disturbances. Citizen science combined with novel technology presents an 27 
opportunity to achieve data collection at the required scale, but the accuracy and 28 
feasibility of new tools must be assessed. Here we show that a citizen science 29 
program that collects seascape images and analyses them using a combination of 30 
deep learning and online citizen scientists can produce accurate benthic cover 31 
estimates of key coral groups. The deep learning and citizen scientist analysis 32 
methods had different but complementary strengths depending on coral category. 33 
When the best performing analysis method was used for each category in all 34 
images, mean estimates from 8086 images of percent benthic cover of branching 35 
Acropora, plating Acropora, and massive-form coral were ~99% accurate compared 36 
to expert assessment of the same images, and >95% accurate at all coral cover 37 
ranges tested. The effort to achieve 95% accuracy at a site – our ecologically 38 
relevant target based on the accuracy of other tools – was attainable based on 39 
citizen scientist involvement in pilot years of the program, with 18-80 images needed 40 
depending on coral type and reef state. Power analyses showed that sampling up to 41 
114 images per site was needed to detect a 10% absolute difference in coral cover 42 
per category (power = 0.8), accounting for natural heterogeneity. However, the 43 
benthic cover of ‘all other coral groups’ as a single category could only be estimated 44 
with 95% accuracy at 60% of survey sites and for images with 10-30% coral cover. 45 
Disaggregating this ‘other coral’ group into more distinct coral categories may 46 
improve accuracy. Overall, citizen science can provide an accuracy that is 47 
acceptable for many end-users for select coral morphologies. Such a combination of 48 
emerging technology and citizen science presents an attainable tool for collecting 49 
inexpensive, widespread reconnaissance data of coral reefs that can complement 50 
higher resolution survey programs or be an accessible tool for resource-poor 51 
locations.  52 
  53 
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Introduction 55 

Ecosystem management needs various forms of data (Grêt-Regamey et al., 2017; 56 
Lindenmayer et al., 2008). Long-term monitoring of coral reefs is often conducted by  57 
government and research programs focused on accurate estimates of coral 58 
abundance at high taxonomic resolution (Edmunds, 2024; Reverter et al., 2022). 59 
However, there is also a need for coarser, rapid reconnaissance over large areas 60 
(Edmunds & Bruno, 1996; Mumby et al., 2021). Such up-to-date broadscale 61 
reconnaissance will inform where to prioritise limited conservation resources in the 62 
face of unprecedented global disturbances (Reverter et al., 2022; Swinfield et al., 63 
2024).  64 
 65 
One method to achieve broadscale reconnaissance is citizen science, whereby effort 66 
is crowdsourced from distributed participants. Citizen science has contributed data 67 
on coral reefs for decades. In the 1980’s, Raleigh International conducted dedicated 68 
project-based expeditions and marine surveys by trained citizen scientists (Beames, 69 
2004). In the 1990s, Coral Cay Conservation trained citizen scientists to collect data 70 
in support of establishing coral reef management plans in Belize (Mumby et al., 71 
1995). More recently, Reef Check engages trained citizen scientists to capture 72 
percent cover of 10 benthic cover categories using point intercept transects; it 73 
collects data that are ~93% accurate and aims to support science and management 74 
decisions (Done et al., 2017; Hodgson, 1999). Established in 2007, Reef Life Survey 75 
uses selectively chosen and trained citizen scientists to collect high-quality on 76 
Scuba, supporting global science and conservation efforts (Edgar & Stuart-Smith, 77 
2014).  78 
 79 
There are also government-run citizen science programs such as Reef Health 80 
Impact Surveys and Eye on the Reef, operated by the Great Barrier Reef Marine 81 
Park Authority in Australia (Beeden et al., 2014). Reef Health Impact Surveys provide 82 
‘advanced in-water training’ to citizen scientists to collect data in a structured 83 
program. The Eye on the Reef mobile application is simpler and relies on 84 
opportunistic sampling that enables observational data collection by anyone on the 85 
Great Barrier Reef.  86 
 87 
The CoralWatch citizen science program was established in 2002, creating a simple 88 
tool to assess the presence of coral bleaching by comparing in-situ coral colour with 89 
a calibrated coral health chart. CoralWatch differs from many previous programs 90 
because it does not require substantial training and enables anybody to collect data, 91 
resulting in a large, opportunistically collected database (Marshall et al., 2012). 92 
CoralWatch currently comprises 17% of all publicly accessible bleaching data 93 
globally through its online data portal (unpublished data, C. Roelfsema). 94 
 95 
Some of the limitations for citizen scientists to participate in accurate data collection 96 
may be removed by using technology such as deep learning (McClure et al., 2020). 97 
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Deep learning, a subdomain of artificial intelligence, is a computational approach in 98 
which systems learn patterns from data, rather than following explicit instructions, 99 
enabling them to solve tasks based on examples rather than pre-defined solutions 100 
(Mitchell, 1997). Deep learning has dramatically increased the efficiency of 101 
environmental image analysis (e.g. González-Rivero et al., 2020). However, current 102 
deep learning tools for coral reefs mostly rely on consistent, high quality photographs 103 
of quadrats (Courtney et al., 2022; González-Rivero et al., 2020; Schürholz & 104 
Chennu, 2023). While such photographs could be taken by citizen scientists, it 105 
requires dedicated Scuba logistics, which best suits the capacity of professional 106 
scientists engaged in monitoring reef state. Opening image collection to citizen 107 
scientists without training, specialist equipment, and with flexible logistics including 108 
snorkelling, would vastly expand the scope of data collection.  109 

 110 
The Great Reef Census is a citizen science project that started on the Great Barrier 111 
Reef, Australia. The Great Reef Census utilises two types of citizen scientist: those 112 
who collect underwater images in the field and those ‘virtual volunteers’ who help 113 
analyse the resulting images online. The latter group are based all over the world 114 
and do not need access to the reef: many do not have access due to distance, 115 
resources or physical limitations. For in-water field surveys, citizen scientist tourists 116 
and reef industry workers capture images without specialised equipment or formal 117 
training. The only training required is reading a simple 2-page methods protocol. 118 
These images are then analysed using deep learning and by online citizen scientists 119 
to estimate benthic cover. A key question is if using deep learning reduces the barrier 120 
to entry for non-experts to participate in basic image analysis. Deep learning is 121 
generally faster at recognising shapes and is rapidly improving, but human vision 122 
may still outperform when complexities are introduced such as texture, shadows or 123 
poor water visibility (Rubbens et al., 2023).  124 
 125 
There is a need to assess if citizen science-based seascape photo analysis can 126 
provide valid data to inform management, restoration or science. If image collection 127 
can be achieved by nearly anyone and analysis can be distributed to deep learning 128 
(artificial intelligence; hereafter ‘AI’) and citizen scientists globally, this would enable 129 
a vast expansion of the scope of data collection relative to traditional tools. However, 130 
achieving massive scaling of data collection requires a trade-off in precision, 131 
accuracy and taxonomic resolution. Because scale and accessibility for non-experts 132 
is limited by the complexity of species-level identification, here we do not identify 133 
specific taxonomies, which are constantly under revision and even beyond the 134 
skillset of many scientists (Ramírez-Portilla et al., 2022). Yet, measuring cover of 135 
select coral morphologies can still inform many management actions, such as pest 136 
control and marine park planning, and morphological information by genus is 137 
important for key ecosystem functions like bioconstruction of reefs (Wolfe et al., 138 
2020). Here, we focus on the capacity of citizen science to estimate cover of key 139 
coral morphologies that commonly dominate on the Great Barrier Reef: branching 140 
Acropora, plating Acropora and massive-form corals such as Porites or Platygyra 141 
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(Veron, 2000). Branching and plating Acropora are fast-growing coral that are 142 
important for reef recovery following disturbance, but are vulnerable to threats like 143 
crown-of-thorns starfish and cyclones, while massive corals are slower growing yet 144 
more resistant to threats and exhibit longevity that is important for sustaining reef 145 
accretion and persistence (Loya et al., 2001; Ortiz et al., 2021; Pratchett et al., 2020; 146 
Wolfe et al., 2020). Protecting populations of these coral groups can give outsized 147 
ecological benefit (Ortiz et al., 2021). 148 
 149 
Our overall aim is to assess if seascape images of the reef collected by citizen 150 
scientists can provide sufficiently reliable information for reef management. To 151 
achieve this aim, our first objective is to assess if AI-alone or AI-supported citizen 152 
scientist analysis can accurately quantify the cover of three coral groups in seascape 153 
images collected by citizen scientists. Next, given the variability in accuracy among 154 
images, we ask how many images are needed to achieve a reasonable level of 155 
accuracy for a survey site, and how many online citizen scientists are needed to 156 
analyse each image. Finally, we run a series of power analyses to determine the 157 
number of images needed to also account for the natural heterogeneity of the reef.  158 
 159 

1. Methods 160 

1.1. Image collection and analysis 161 

We analysed seascape images collected by citizen scientists using three methods: a 162 
semantic segmentation deep learning model (‘AI-alone’), an AI-assisted online 163 
citizen scientist analysis platform (‘AI+Citizen’), and ‘expert’ analysis which was used 164 
to assess the performance of the other two methods. We then explored the 165 
performance of the results in deriving accurate coral cover values with current 166 
resource capabilities (Figure 1).  167 
 168 
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 169 
Figure 1 - Summary flowchart of methods. Blue rectangles represent data, green circles represent methods of 170 
image analysis, and yellow rounded boxes represent statistical analyses of performance. Figure made with 171 
draw.io.  172 

1.1.1. In-water survey methodology 173 

Images (n = 29,967) were collected as part of the Great Reef Census from 174 
September 2022 – February 2023 at 1512 sites distributed over 211 of the ~3000 175 
reefs across the Great Barrier Reef, Australia. The Great Reef Census follows a 176 
simple survey methodology to collect seascape images (See Figure 3 for an 177 
example). Volunteer citizen scientists (~70) were tasked with capturing random 178 
images of reef slopes or bommies at depths between 3 m and 20 m. While 179 
participants could survey any reef, a priority map of reefs was provided to guide the 180 
most ‘valuable’ reefs to survey based on relevance to government managers, 181 
scientists or ecological importance, for example as a key source of larval dispersal 182 
(Mumby et al., 2021). Shallow reef tops (0-3 m) were excluded due to the difficulty of 183 
obtaining seascape images.  184 
 185 
The survey protocol was designed to be easy, without the need for advanced training 186 
or scientific equipment. Images were collected on snorkel further from the substrate 187 
than standard photoquadrat surveys - i.e. 3-5m compared to 1m (Williams et al., 188 
2019) - using basic handheld cameras such as GoPros (www.gopro.com). Images 189 
were captured parallel to the reef, with snorkelers duck-diving as required. 190 
Participants were told to capture images every 10 fin kicks, worked in pairs, and 191 
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aimed to photograph reef sections approximately 5 m × 5 m in each image, with a 192 
minimum of 20 images per person per survey. Participants were instructed to survey 193 
at least three sites of a reef, separated by a minimum distance of 200 m. Preferably 194 
each site was located on a different aspect of the reef, i.e. north, south, 195 
east/windward or west/leeward, assuming safe and feasible logistics. Images were 196 
uploaded to the Great Reef Census web-based platform (www.greatreefcensus.org) 197 
with corresponding time and GPS coordinates. GPS coordinates were given for each 198 
image if a towed GPS unit was used, otherwise GPS coordinates were noted at the 199 
beginning of each survey from the mother vessel, the tender vessel, or the camera’s 200 
internal GPS while it was above water. 201 
 202 

1.1.2. Expert validation data 203 

 204 
To assess the accuracy of the AI-alone and AI+Citizen analyses, a subset of images 205 
were analysed with high accuracy using manual analysis by paid scientists skilled in 206 
coral identification and other benthic categories (hereafter referred to as ‘expert’ 207 
data).  208 
 209 
To establish an efficient method of expert analysis, 615 images were first analysed 210 
by two methods: a ‘detailed’ method and a ‘visual’ method (Jokiel et al., 2015; 211 
Josephitis et al., 2012). The ‘detailed’ method used a custom-built software to draw 212 
polygons manually around individual coral colonies and assign a label corresponding 213 
to the coral categories of interest. The label options were branching Acropora 214 
(hereafter ‘Branching’), plating Acropora (hereafter ‘Plating’), massive-form coral 215 
(hereafter ‘Massive’), all other coral (hereafter ‘Other’)”, “reef substrate”, “water, 216 
sand, and shadow”, and “I don’t know” (Figure 2). The total area of each coral 217 
category’s polygons in each image were then calculated. Coral categories were 218 
presented as percent of total colonisable reef substrate, i.e. excluding 219 
sand/water/shadow. The ‘visual’ method used a different custom-built software that 220 
placed a 9-cell grid (3x3) over each image. Each grid square therefore comprised 221 
11.1% of the total image. Experts visually assessed the proportion of each of the 222 
nine grid sections comprised of each coral category. The coral cover proportion of 223 
each grid square (0-100%) was multiplied by 11.1% and all grid square values 224 
summed to obtain the total cover of each coral type in each image. There was no 225 
significant difference in absolute coral cover between the ‘detailed’ and ‘visual’ 226 
methods (p = 0.6, mean difference = -1.5%, n = 615, Wilcoxon Signed-Rank Test). 227 
As a result, we used the faster ‘visual’ method to maximise the number of images 228 
analysed. Using the ‘visual’ method, 8086 images were analysed by three experts. 229 
Images were randomly assigned to experts; if the same image was analysed by 230 
multiple experts, the average values for each coral cover category were taken. 231 
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 232 

 233 
Figure 2 - Category label options used for expert analysis, AI-alone analysis, and the AI+Citizens online analysis 234 
platform. A) “Branching Coral” - Branching coral of genus Acropora. B) “Plating Coral” - Plating/table coral of 235 
genus Acropora. C) “Massive Coral”. D) “Other Coral” - All other coral types. E) “Reef substrate” - any hard 236 
surface of the seascape suitable for coral growth. F) “Water, sand and shadow” - any region not included in the 237 
other categories, consisting of the background water column, bare sand, shadow or other objects that preclude 238 
substrate identification. 239 
 240 

1.1.3. Deep learning model development 241 

A semantic segmentation model (Guo et al., 2018) was trained to identify coral 242 
morphology in citizen science imagery. SegFormer was used to develop the 243 
segmentation model (Xie et al., 2021). SegFormer uses a robust hierarchical 244 
transformer-based approach and its architecture allowed the model to capture fine-245 
grained spatial features and contextual relationships within coral imagery. These 246 
characteristics are critical when analysing the variability in coral shapes, sizes, and 247 
colours, as well as the complex underwater environment with challenging lighting 248 
conditions and diverse backgrounds. The model was implemented in Python using 249 
PyTorch and trained on a Dell Technologies HPC GPU-Accelerated System, utilising 250 
a Dell EMC PowerEdge server cluster (Table 1). 251 
 252 
To train the segmentation model, 7505 reefscape images collected by citizen 253 
scientists as part of Great Reef Census expeditions in 2020-2021 were annotated 254 
using the ‘detailed’ expert analysis method described earlier, using a custom-built 255 
software to delineate key coral morphologies digitally and assign labels to each 256 
polygon. The labels were the same predefined categories used in the expert 257 
analysis. The custom-built software converted these labelled polygons to JSON files 258 
used for segmentation model training (Table 1). The 7505 training images were 259 
divided in an 80:20 split: 6,004 images were used to train the model directly and 260 
1,501 images were used for validation and evaluation to allow the model to learn 261 
effectively during training (Table 1). 262 
 263 
After training, the model was used to generate segmentation masks of 29,967 264 
images that weren’t involved in the training phase, classifying each pixel into one of 265 
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the predefined categories. The model produced a total pixel count of each category 266 
that was divided by the known total pixel count of each image to determine percent 267 
cover of each category and used as the ‘AI-alone’ values for each image.  268 
 269 
Table 1 - Parameter values used in training the semantic segmentation (AI) model. 270 
Parameter Value Comments 
Crop Size 640 x 640 

pixels 
Provided a balance between computational 
efficiency and the preservation of crucial spatial 
features in the coral imagery. 

Batch Size 7 Optimised memory usage on available 
hardware while ensuring stable gradient 
updates. 

Learning Rate 0.00006 This relatively small learning rate was required 
for the fine-tuning process, enabling the model 
to gradually adjust to the intricacies of coral 
morphology without overshooting optimal 
parameter values. 

Learning Rate 
Schedule 

Constant, with 
no additional 
scheduling 
mechanisms 

This approach was chosen after observing that 
the model's convergence was stable and that 
introducing a learning rate decay did not 
significantly improve performance during 
preliminary trials. 

Maximum 
Epochs 

30 epochs Determined through iterative experiments to 
ensure that the model had sufficient 
opportunities to learn while avoiding overfitting. 

Early Stopping 
Patience Value 

20 epochs Training would halt if no improvement in the 
validation mean Intersection over Union (IoU) 
score was observed over 20 consecutive 
epochs.   

Early Stopping 
Mode 

Maximum Ensured that the best-performing model was 
retained based on IoU maximisation. 

 271 

1.1.4. AI+Citizen analysis platform 272 

An online platform was created (www.greatreefcensus.org/analysis) where citizen 273 
scientists assign labels to polygons for each image to derive coral cover of each 274 
category (Figure 3). Platform users were primarily volunteers, including the public, 275 
school children, and corporate staff partners in Corporate Social Responsibility 276 
programs. Users labelled polygons that were generated by the segmentation model 277 
described earlier. The label options were the same as for the expert analysis (Figure 278 
2). A 3-minute video was provided when users first logged in to the platform to 279 
explain how to identify each category, with a help page available at all times. Floating 280 
pop-ups on the platform were also available on the image analysis page to remind 281 
users how to identify each group if required. For each analysis, the cover of each 282 
category was calculated in the same method as the expert and AI-only analysis; i.e. 283 
coral cover as a percentage of colonisable area in the image. When multiple users 284 
analysed the same image, the average of all user results was used. 285 
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 286 
The platform randomly assigned images to users in real-time, prioritising images with 287 
the fewest analyses complete. For example, if some images had already been 288 
analysed by two other users, the platform would only present images to users that 289 
had been analysed once. All images with the lowest number of complete analyses 290 
were equally likely to be assigned to a user, so that the images from a site were 291 
analysed by several online users.  292 
 293 
The online platform was operational for 11 months (April 2023 – March 2024), during 294 
which 150,391 analyses of 20,879 images – each analysed multiple times – were 295 
completed by 6,052 individual citizen scientists from 70 countries.  296 
 297 

 298 

 299 
Figure 3 - The Great Reef Census online analysis platform. Citizen scientists assigned labels to polygons 300 
generated by a segmentation model identifying distinct objects. The highlighted polygon to label can be seen in 301 
the bottom right corner. Credit: greatreefcensus.org. 302 

 303 

1.2. Data analysis 304 

We conducted a series of tests to examine the effectiveness and reliability of the 305 
citizen science method for collecting coral cover data. Based on the accuracies of 306 
other common tools (Leujak & Ormond, 2007), we chose ±5% absolute difference 307 
from expert values as an ecologically relevant accuracy target for broadscale 308 
reconnaissance; for example to be useful for distinguishing healthy from unhealthy 309 
reefs. To combine the relative strengths of the AI-alone and the AI+Citizens methods, 310 
the most accurate analysis method for each coral type was used in a ‘best’ method 311 
for all images. Next, while the mean of all images might be accurate, some 312 
management applications require coral cover estimates specifically at unhealthy 313 
reefs, in which case the method needs to be tested for images with low coral cover 314 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.27.625580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.27.625580
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

(0-20% coral cover). We disaggregated images into coral cover bins of 10% 315 
increments for each coral type, so that results can be interpreted within a diversity of 316 
reef contexts. For example, citizen science may overestimate low coral cover images 317 
and underestimate at high coral cover: a common problem for bounded proportion (0 318 
– 100) metrics (Ferrari & Cribari-Neto, 2004). Consequently, any such bias may 319 
systematically over- or underestimate coral cover at individual locations. We then 320 
used simulations to determine how many images are needed to ensure a site 321 
estimate reliably falls within ±5% accuracy. This is required because although the 322 
mean value of all images may be accurate, there is variability in the accuracy of coral 323 
cover derived from any one image. Greater variability in accuracy among images will 324 
require more images from each site to obtain a reliably accurate mean site value. 325 
Finally, we performed power analyses to determine how many images are needed 326 
from a site to detect a 10% difference in coral cover, with 80% power, of each coral 327 
category.  328 
 329 

1.2.1. Accuracy of coral categories per image 330 

1.2.1.1. AI-alone 331 

To determine the accuracy of the AI-alone method for each coral type, the mean 332 
expert result of each coral cover category 𝑗 for each image 𝑖 (𝐸𝑥𝑝𝑒𝑟𝑡!", % cover) was 333 
subtracted from the AI-alone result of the same image (𝐴𝐼!", % cover) to obtain an 334 
absolute percent difference 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!"#$(% cover): 335 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗
𝐴𝐼 	 = 𝐴𝐼𝑖𝑗 − 	 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑗     1 336 

This was repeated for all coral categories. For example, if the AI output for Branching 337 
coral was 5% and the expert value was 10% for the same image, the AI-alone 338 
accuracy was described as -5%, i.e. AI underestimated the expert value by 5%.  339 

1.2.1.2. AI+Citizen 340 

Similarly, to determine the accuracy of the AI+Citizen analysis for each image and 341 
coral category (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!"%!&!'()*, % cover), the mean expert result was subtracted 342 
from the mean AI+Citizen result to obtain an absolute percent difference: 343 
 344 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗
𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑠 	 = 𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑠𝑖𝑗 − 	 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑗    2 345 

1.2.1.3. ‘Best method’ accuracy 346 

Given the relative strengths of the AI-alone and AI+Citizen results individually, we 347 
combined the results to achieve the ‘best’ method for analysing citizen science 348 
images. The best method used the more accurate - using the mean of all images - of 349 
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the AI-alone or AI+Citizen method for each coral type (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!"+(*&) and applied it to 350 
all images.   351 

1.2.1.4. Disaggregating accuracy by reef state (coral cover) 352 

 353 
To assess differences in accuracy at different coral cover levels, we categorised 354 
images into 10% cover bins for each coral category as determined by the experts. 355 
For each 10% bin with at least 80 images, we obtained the mean accuracy of images 356 
using our ‘best’ method for each coral cover category. Images were re-assigned to 357 
bins for each coral cover category.  358 

1.2.2. Images required per site 359 

1.2.2.1. Accuracy: Number of images needed to reach ± 5% accuracy  360 

 361 
The earlier analyses provide the overall accuracy of the methodology in extracting 362 
coral cover from an image. However, given the variation in accuracy among images, 363 
we need to know how many images are needed for the mean accuracy of a site to 364 
meet an accuracy of ±5%. To answer this question, we ran a series of simulations. 365 
For each simulation run, we randomly sampled 𝑛 images from the entire image 366 
library and determined the mean accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)", % cover) of each coral type 367 
𝑗 in those images: 368 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑗 = 	
1

𝑛
! 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗

𝐵𝑒𝑠𝑡

𝑛

𝑖=1

	370 

    3 369 

We conducted 10,000 simulation runs for each value of 𝑛 from 1 to 120 and plotted 371 
each run’s value for 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)".  372 
 373 

1.2.2.2. Effect of multiple citizen analyses per image 374 

An advantage of the AI+Citizen analysis over AI-alone is that multiple citizen 375 
scientists can analyse the same image to obtain a mean result. The mean result 376 
from many individual analyses may be more accurate than having one citizen 377 
scientist analyse each image. As a result, if images are analysed by multiple citizen 378 
scientists, we may need fewer images to meet an accuracy of ±5% reliably, which 379 
can reduce the in-water survey effort. We assumed ‘reliably’ meant that an accuracy 380 
of ±5% is achieved in 95% of simulation runs. For the coral types for which 381 
AI+Citizen analysis was the most accurate, we determined the effect of increasing 382 
the number of analyses on the probability of a site being within ±5% of expert 383 
analysis. To achieve this, we repeated the simulations described in section 1.2.2.1 384 
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while varying the number of analyses per image (𝑚) from 1 to 6. Analyses were 385 
sampled with replacement from each image. To obtain the mean accuracy of an 386 
image 𝑖 with varying citizen scientist analyses (𝑣): 387 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗𝑚 = 	
1

𝑚
! 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑗𝑣

𝐵𝑒𝑠𝑡

𝑚

𝑣=1

	389 

    4 388 

Where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗𝑚 is the mean accuracy of coral category 𝑗 for an image 𝑖 with 𝑚 390 

number of citizen scientist analyses (𝑣). We determined the mean accuracy across 𝑛 391 
images, given 𝑚 citizen scientist analyses per image, by: 392 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑗𝑚 = 	
1

𝑛
! 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗𝑚

𝑛

𝑖=1

	394 

    5 393 

For each image count (𝑛 = 1 to 120) and analysis count (𝑚 = 1 to 6), the percent of 395 
runs that had a mean accuracy within ±5% was noted (out of the 10,000 runs for 396 
each combination of image count and analysis count). This provided the minimum 397 
number of images needed per site to meet an accuracy of ±5% in 95% of runs, to 398 
test if the number of images needed is reduced with more analyses completed per 399 
image.  400 

1.2.2.3. Power analysis: Number of images needed to detect 10% 401 
difference in coral cover 402 

Once the minimum number of images to meet accuracy requirements for the 403 
methodology has been determined, there remains the question of capturing 404 
heterogeneity of the reefscape. A series of power analyses were performed to 405 
determine how many images per site are needed to distinguish between sites with a 406 
10% difference in coral cover.  407 
 408 
Images analysed by all methods (AI-alone, AI+Citizen and experts) were grouped 409 
according to survey site. Each site was categorised into 10% coral cover bins (0-410 
10%, 10-20% etc) for each coral type according to expert values. The standard 411 
deviation of coral cover values at each site was determined for each coral type using 412 
our ‘best’ method to capture the variability when using citizen science methodology. 413 
Then, within each coral type and coral cover bin, the mean standard deviation of 414 
coral cover at all sites was calculated.  415 
 416 
The mean standard deviation of sites for each coral type and coral cover bin was 417 
used to conduct a power analysis, aimed at determining the minimum number of 418 
images needed per site to detect a 10% absolute difference in coral cover (effect 419 
size) with a power of 0.8 and an alpha level of 0.05. Any sites with fewer than 10 420 
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images analysed were discarded for this analysis. Images were not mixed across 421 
sites to ensure the realistic heterogeneity of the reefscape was captured. 422 
 423 
All statistical analysis was performed in R (R Core Team, 2010) (R Core Team 2023) 424 
and the tidyverse collection of packages (Wickham et al., 2019). The power analyses 425 
were performed using the pwr package (Champely, 2020). 426 

2. Results 427 

2.1. Accuracy of Coral Categories per Image 428 

2.1.1. Mean accuracy of AI-alone and AI+Citizens 429 

 430 
The mean difference between the expert analysis and AI-alone analysis for all 431 
images (8,086 images) ranged from -9.1% for Plating coral to +6.9% for Other coral 432 
(Figure 4). The mean difference between expert analysis and AI+Citizen analysis for 433 
all images with at least 1 citizen analysis (7,790 images) ranged from -0.99% for 434 
Plating coral to +9.5% for Branching coral (Figure 4).  435 
 436 
The AI-alone method was more accurate for Branching coral cover, while the 437 
AI+Citizen method performed better for Plating, Massive, and Other coral cover. 438 
Therefore, the ‘best’ method combined AI-alone results for Branching coral with 439 
AI+Citizen results for the remaining coral types. The mean difference from experts 440 
using our best method was -1.1% for Branching coral, -1.1% for Plating coral, -0.1% 441 
for Massive coral and +4.55% for Other coral. Using our ‘best’ method, the mean 442 
difference from experts for total coral cover improved from -5.1% (AI-alone) and 443 
+13.9% (AI+Citizen) to +2.3% (Figure 4).  444 
 445 
 446 
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 447 
Figure 4 - The mean accuracy of the AI-alone (7,505 images), AI+Citizen (7,790 images) and ‘Best’ (7,608 448 
images) method for each coral category. The y-axis is measured as the difference between the method’s output 449 
and the expert results for each same image. “Total Coral” is the accuracy of the total benthic coral cover, i.e. the 450 
sum of the difference from expert analysis of all individual coral categories. “Other” refers to all coral types except 451 
branching Acropora, plating Acropora, and massive-form corals. Error bars show standard error of the mean. NB: 452 
Negligible differences are observed between the best method and the most accurate method for each coral type 453 
(e.g. AI-alone and best for Branching coral) due to slight differences in which images were analysed for each 454 
method.  455 

2.1.2. Disaggregating accuracy by reef state (coral cover) 456 

For Branching, Plating and Massive coral, all reef state bins were within our target of 457 
±5% accuracy (Figure 5), but Other coral had higher error for low and high reef state 458 
bins, ranging from +9.3% for 0-10% coral cover to -19.7% for 40-50% coral cover 459 
(Figure 5). There was higher uncertainty in mean accuracy at high coral covers due 460 
to small sample sizes (Figure 5).  461 
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 462 
Figure 5 - The mean accuracy of coral cover estimates for images from each 10% reef state bin using the 'best' 463 
method (minimum images per reef state bin = 80, because up to 80 images were needed to achieve accuracy in 464 
95% of sites for all coral types with one citizen analysis complete; see Figure 6 Plating coral panel). The x-axis 465 
represents the coral cover of the coral category according to expert analysis. Error bars show standard error of 466 
the mean; there were generally fewer images available at higher coral cover bins, resulting in larger standard 467 
errors. Dashed horizontal lines show our desired accuracy threshold (± 5%). Note that the y-axis range differs in 468 
panel D. 469 

2.2. Images required per site 470 

2.2.1. Accuracy: number of images needed to reach ± 5% accuracy 471 

The simulations showed that increasing the number of images per site reduced the 472 
variability in mean site accuracy (Figure 6). For example, with just one image per 473 
site, 95% of sites had differences from expert analysis ranging from -11% to +22% in 474 
absolute Branching coral cover. In contrast, when 80 images were collected per site, 475 
95% of sites showed differences within a narrower range of -3% to +1%. 476 
Consequently, collecting more images from each site increased the likelihood of the 477 
site accuracy meeting an accuracy of ±5%. Branching coral – the only category in 478 
which AI-alone was most accurate – required 17 images per site for the mean 479 
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accuracy to be within ±5% accuracy for 95% of sites (Figure 6a; Figure S1). Plating 480 
and Massive coral needed less than 80 and 70 images, respectively, to achieve ±5% 481 
accuracy for 95% of sites, but this varied depending on the number of citizen 482 
analyses completed on each image (see later). For Other coral, as the number of 483 
images collected per site increased, the percent of sites that achieved ±5% accuracy 484 
became asymptotic to about 60% (Figure 6). 485 

2.2.2. Effect of multiple citizen analyses per image 486 

For coral categories in which AI+Citizen was more accurate than AI-alone (Plating, 487 
Massive and Other), increasing the number of analyses per image reduced the 488 
number of images needed per site to achieve ±5% accuracy, with diminishing returns 489 
(Figure 6b-g). For example, with just one analysis per image, 80 (Plating) and 70 490 
(Massive) images were needed to meet an accuracy of ±5% for 95% of simulated 491 
sites, yet if 4 analyses were completed then just 44 and 34 images, respectively, 492 
were needed (Figure 6b-g; Figure S1). Completing 6 analyses per image only 493 
marginally reduced the required images to 40 and 31 images for Plating and Massive 494 
categories, respectively. In general, 4 analyses per image achieved high accuracy 495 
with efficient resource use, however this will vary depending on project goals and 496 
resource distribution across in-water survey and online analysis efforts. 497 
 498 
 499 

 500 
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 501 

 502 

 503 
Figure 6 – Mean site accuracy with increasing image count for Branching coral using AI-alone (A), Plating coral 504 
with 1 citizen analysis per image (B), Plating coral with 4 citizen analyses per image (C), Massive coral with 1 505 
citizen analysis per image (D), Massive coral with 4 citizen analysis per image (E), Other coral with 1 citizen 506 
analysis per image (F) and Other coral with 4 citizen analysis per image (G). Each grey point represents the 507 
mean image accuracy of one simulation run of randomly sampled images (10,000 runs per image count value). 508 
The orange points represent the mean value of all simulation run means for each image count value. The green 509 
bars show where 95% of simulation runs lie. The simulations were run up to 120 images per survey site, but the 510 
x-axis is truncated for clarity here. 511 

2.2.3. Power analysis: number of images needed to detect 10% 512 
difference in coral cover  513 

The power analyses showed that the number of images required to detect a 10% 514 
difference in absolute coral cover ranged from 4 (Branching coral 0-10%) to 114 per 515 
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site (Massive coral 30-40%; Figure 7). Most of the tested categories required 80 516 
images or less to detect a 10% difference in absolute coral cover of that category. 517 
Generally, more images were needed at higher coral covers. Few sites were 518 
available with coral cover greater than 50% in any coral category.  519 
 520 

 521 

 522 
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Figure 7 – A: Mean standard deviation of surveyed sites for each reef state bin and coral type. Error bars show 523 
standard error of the standard deviation. n-values inset show the number of sites in each column. B: Power 524 
analysis results. Columns show the number of images required per site to detect a 10% difference in coral cover 525 
among sites based on their standard deviation (power = 0.8, alpha = 0.05).  526 

3. Discussion  527 

A combination of AI and non-expert human analysis of seascape images collected by 528 
citizen scientists can provide cover estimates of key coral categories that are 529 
accurate to within ±5% of trained expert analysis. This accuracy was achieved at any 530 
level of coral cover for Branching, Plating and Massive coral, but was only achieved 531 
for Other coral in images with 10-30% cover. The level of citizen science effort 532 
required to meet ±5% accuracy for the three key coral categories – up to 45 images 533 
per site analysed by four citizen scientists – is achievable based on previous 534 
participation in citizen science initiatives. Power analyses demonstrated that for 535 
some sites, more images are needed to detect a 10% change in coral cover and 536 
capture the heterogeneity of the reef than are necessary to be confident in the 537 
accuracy of the analysis method. Here we discuss the practical application of these 538 
methods and considerations dependent on project goals.  539 

3.1. Varying the sampling protocol based on project goals 540 

A project using a citizen science-based method similar to that presented here can 541 
adjust its sampling strategy based on the program goals and distribution of 542 
resources between in-water survey efforts and online citizen scientists (Table 2). If 543 
more resources are allocated to online citizen scientists than in-water sampling, the 544 
project could reduce the number of images collected, relying on increased citizen 545 
scientist analysis effort to maintain confidence in the results. Over the first two years 546 
of testing the online analysis platform, each image was analysed 5-6 times. The 547 
platform’s scalability suggests that this level of analysis can be sustained given that 548 
online analysis is cheaper and can be conducted globally, while in-water surveys 549 
require more resources and are restricted to local participants. Indeed, in some 550 
instances collecting fewer images per site and surveying more sites is a preferred 551 
approach, as more extensive online citizen science analysis could compensate for 552 
the lower image count.   553 
 554 
For example, there is management interest in validating modelled habitat maps of 555 
key coral morphologies (Roelfsema et al., 2021). These maps predict the coral 556 
morphology most likely to dominate based on environmental factors such as wave 557 
energy and disturbance exposure. Such maps support research, ecological 558 
modelling, and decision-making in management and restoration (Anthony et al., 559 
2017; Bellwood et al., 2019; Pittman et al., 2007). However, the modelled predictions 560 
of dominant coral type often lack empirical validation. To validate these maps most 561 
effectively, it is essential to survey as many sites as possible given that dominant 562 
coral type can vary over short distances. Hence, using online citizen science 563 
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analysis to improve accuracy and minimise image collection at any one site is 564 
preferred.  565 
 566 
Table 2 – Example scenarios to illustrate the interplay between the number of images required to meet 567 
methodological accuracy levels and the number of images required to detect a 10% difference in coral cover 568 
between sites based on the results of the power analysis. Fewer images will decrease the certainty in coral cover 569 
estimates, however this may be acceptable for some project goals. In most cases, the required number of images 570 
to meet desired methodological accuracy will need to be met, regardless of if the results of the power analysis 571 
need to be met. However, in some instances, a ± 5% accuracy target is higher than required and so fewer 572 
images can be collected to meet a lower accuracy target.  573 

Scenario Required images relative 
to number needed for ± 
5% methodological 
accuracy. 

Required images relative 
to number needed to 
detect a 10% difference. 

Low precision needed: 15-
20% detectable difference in 
coral cover between sites. 

Similar Fewer 

High precision needed: 5% 
detectable difference in 
coral cover between sites. 

Similar More 

Approximate coral cover 
needed to distinguish very 
low and high coral cover 
reefs. 

Fewer Fewer 

Outplant restoration site with 
low, homogenous coral 
cover. 

Similar Less than needed to meet 
±5% accuracy. 

Validate habitat maps of 
dominant coral type. 

Similar Likely fewer. 

 574 
Sampling design can also be guided if the approximate condition of the reef is known 575 
a priori. For example, if a site is known to be heavily damaged with less than 20% 576 
coral cover, then the power to detect change is unlikely to be an issue if enough 577 
images are collected to meet accuracy needs for the sampling method (generally at 578 
least ~44 images with 4 analyses each). A similar approach may be taken to survey 579 
small scale restoration activity where most of the area can be surveyed directly 580 
and/or is likely to be highly homogenous (McLeod et al., 2022).  581 
 582 
Similarly, if a project needs less accurate estimates of coral cover, say within ±10%, 583 
fewer images are needed to be confident in the method. As coral cover increases, it 584 
is likely less important to obtain a highly accurate and precise estimate of coral 585 
cover. For example, a ±10% range in possible values at 50% coral cover is unlikely 586 
to affect decision-making in the same way it would at 15% coral cover (Wickham et 587 
al., 2019), unless the goal is to track coral cover change precisely over time.  588 
 589 
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3.2. Samples required compared to other tools 590 

Here we showed that useful broadscale reconnaissance survey data can be 591 
achieved with currently observed levels of citizen scientist engagement. In some 592 
situations, such as sites with Branching 20-30% and Massive coral 30-40%, more 593 
images were needed to detect a 10% difference in coral cover with sufficient power 594 
than were needed to be confident in the accuracy of the sampling method. The 595 
limiting factor at such sites may be the natural heterogeneity of the reef rather than 596 
the accuracy of the sampling method. This is reflected in traditional reef surveying 597 
methods such as photo quadrats and line transect point methods, which require 598 
sampling similar to or greater than needed here. For example, to detect a 20% 599 
relative difference in coral cover using photo quadrat methods, above 10% absolute 600 
cover, requires 38 - 48 (branching Acropora) and 111 – 141 images (massive 601 
Porites), or using line transect methods requires 990 - 15,450 (branching Acropora) 602 
and 820 – 8200 points (massive Porites) (Leujak & Ormond, 2007). Similarly, 603 
Carneiro et al. (2024) found that substantially more survey effort was required to 604 
achieve equivalent accuracy and precision by two common line transect survey 605 
methods, Reef Check and the Atlantic and Gulf Rapid Reef Assessment, compared 606 
to photo quadrats. To estimate coral cover with a 20% error margin, Reef Check 607 
required 1280-3080 line transect points and Atlantic and Gulf Rapid Reef 608 
Assessment required 1400-2200 line transect points (Carneiro et al., 2024). 609 
 610 
The distribution of effort among the number of images collected per site, sites 611 
surveyed, and analyses completed per image will depend on the resource availability 612 
and goals of a program. However, the approximate requirements presented here are 613 
achievable based on experience. For example, while collecting 80 images per site 614 
(40 images each by two snorkellers), previous Great Reef Census expeditions with 615 
four participants have surveyed up to 124 sites across 42 reefs in six days (pers. 616 
comm. A. Ridley, Citizens of the Reef). Similarly, in the first two years of the Great 617 
Reef Census operating, all images (up to 29,967 per year) have been analysed by at 618 
least 5 online citizen scientists with participants from 80 countries (unpublished 619 
data). Given this observed effort and the potential for widespread use by citizen 620 
scientists, such a method may expand data collection in resource-poor areas or 621 
provide an efficient complement to existing methods (Madin et al., 2019). 622 

3.3. Correcting for known inaccuracy 623 

If there are systematic biases that cause known inaccuracies in a method, a 624 
correction offset can be included when reporting results (e.g. Eikelboom et al., 2019). 625 
For example, a 5% methodological overestimation may reduce the data’s reliability 626 
for management decision-making. Hence, any estimates of accuracy can be used as 627 
an offset to correct the data.  628 
 629 
Here, applying a constant offset is likely suitable for Branching, Plating and Massive 630 
coral estimates because all coral cover bins for these categories had similar 631 
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accuracies that were reliably within ±5% of the expert analysis. Applying such an 632 
offset should not affect the uncertainty of estimates, and therefore will not affect 633 
required sample size, because the offset is an absolute percentage of a proportion 634 
rather than a relative percentage offset (Eikelboom et al., 2019). However, care 635 
should be taken if applying an offset for Other coral results, which had more variable 636 
accuracy depending on coral cover level. Other coral was overestimated at low coral 637 
covers and underestimated at high coral covers, making it difficult to apply a 638 
constant offset. This may be a limitation of the current method, in that accurate 639 
estimates of cover can be provided for Branching, Plating and Massive coral but total 640 
coral cover will be underestimated at sites with high Other coral cover.   641 

3.4. Future improvements and conclusions 642 

The main drivers of improved performance in distributed data collection and analysis 643 
programs will likely be technological, although improved training of citizen scientists 644 
and program design can help. For example, anecdotally, we observed that poor 645 
quality images appeared to be harder for both the AI and citizen scientists to analyse 646 
accurately. Poor quality images were commonly caused by human/camera error, 647 
poor water visibility, or images captured more than 5 m from the reef. As camera 648 
technology improves and becomes cheaper, the occurrence of poor-quality images 649 
will likely reduce. Similarly, participants could be instructed to capture images closer 650 
to the sea floor, for example at 3 m instead of 5 m, especially in poor water visibility. 651 
Improved access to post-processing tools, such as automatic colour correction, can 652 
also improve image quality (Raveendran et al., 2021). These factors, alongside 653 
improvements in segmentation model technology, will make analysis by AI and 654 
humans easier and likely improve accuracy. In terms of training citizen scientists, 655 
clearer instruction for identifying dead coral may improve accuracy. Dead Branching 656 
coral in particular – the only coral category for which AI-alone was more accurate 657 
than AI+Citizens – appeared to be poorly identified (pers. comm. Citizens of the 658 
Reef).  659 
 660 
Major improvements may also be achieved by increasing the number of benthic 661 
categories that can be accurately measured. The Other coral group here was the 662 
least accurate likely because it encompasses all coral types except our three key 663 
morphologies, making segmentation model training difficult (Rubbens et al., 2023). 664 
The uncertainty in Other coral estimates may be resolved by disaggregating the 665 
category into distinct coral morphologies/taxonomies and through continual 666 
advances in deep learning (González-Rivero et al., 2020). More resource-intensive 667 
citizen science programs can assess dozens of benthic categories (Done et al., 668 
2017) and emerging deep learning software can identify some coral to the species 669 
level (González-Rivero et al., 2020). However, there is a trade-off between data 670 
quality and scalability; higher taxonomic resolution data currently requires high 671 
quality photographs or participant training that intrinsically limits the program’s 672 
potential span of data collection. 673 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.27.625580doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.27.625580
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 674 
A program such as the Great Reef Census demonstrates how technology, 675 
particularly deep learning, can lower the barrier to entry for citizen science, allowing 676 
non-experts to contribute to accurate coral reef data collection. This approach can 677 
enable large-scale participation globally. While not a replacement for more detailed 678 
scientific monitoring, the method may provide a complementary tool that can support 679 
coral reef management, especially in resource-limited regions, by offering an 680 
accessible and cost-effective method for broadscale surveying of key coral 681 
morphologies.  682 
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